如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过,两点且与轴的负半轴交于点.
(1)求该抛物线的解析式;
(2)若点为直线上方抛物线上的一个动点,当时,求点的坐标;
(3)已知,分别是直线和抛物线上的动点,当以,,,为顶点的四边形是平行四边形时,直接写出所有符合条件的点的坐标.
在平面直角坐标系中,已知抛物线和直线,点,均在直线上.
(1)若抛物线与直线有交点,求的取值范围;
(2)当,二次函数的自变量满足时,函数的最大值为,求的值;
(3)若抛物线与线段有两个不同的交点,请直接写出的取值范围.
如图1,在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴交于点,.
(1)直接写出抛物线的解析式及其对称轴;
(2)如图2,连接,,设点是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点作于点,交轴于点,过点作交于点,交轴于点.设线段的长为,求与的函数关系式,并注明的取值范围;
(3)在(2)的条件下,若的面积为,
①求点的坐标;
②设为直线上一动点,连接,直线交直线于点,则点在运动过程中,在抛物线上是否存在点,使得为等腰直角三角形?若存在,请直接写出点及其对应的点的坐标;若不存在,请说明理由.
已知抛物线经过点和,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点,分别在线段,上点不与,重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
如图,在平面直角坐标系中,平行四边形的顶点,的坐标分别为,,经过,两点的抛物线与轴的一个交点的坐标为.
(1)求该抛物线的解析式;
(2)若的平分线交于点,交抛物线的对称轴于点,点是轴上一动点,当的值最小时,求点的坐标;
(3)在(2)的条件下,过点作的垂线交于点,点,分别为抛物线及其对称轴上的动点,是否存在这样的点,,使得以点,,,为顶点的四边形为平行四边形?若存在,直接写出点的坐标,若不存在,说明理由.
已知抛物线顶点,经过点,且与直线交于,两点.
(1)求抛物线的解析式;
(2)若在抛物线上恰好存在三点,,,满足,求的值;
(3)在,之间的抛物线弧上是否存在点满足?若存在,求点的横坐标;若不存在,请说明理由.
(坐标平面内两点,,,之间的距离
如图,已知抛物线经过点、.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)若点在抛物线上,且点的横坐标为8,求四边形的面积;
(3)定点在轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点在新的抛物线上运动,求定点与动点之间距离的最小值(用含的代数式表示)
如图①,在平面直角坐标系中,已知,,,四点,动点以每秒个单位长度的速度沿运动不与点、点重合),设运动时间为(秒.
(1)求经过、、三点的抛物线的解析式;
(2)点在(1)中的抛物线上,当为的中点时,若,求点的坐标;
(3)当在上运动时,如图②.过点作轴,垂足为,,垂足为.设矩形与重叠部分的面积为,求与的函数关系式,并求出的最大值;
(4)点为轴上一点,直线与直线交于点,与轴交于点.是否存在点,使得为等腰三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.
如图,抛物线的图象经过点,顶点的坐标为,与轴交于、两点.
(1)求抛物线的解析式.
(2)连接,为直线上一点,当时,求点的坐标和的值.
(3)点是轴上一动点,当为何值时,的值最小.并求出这个最小值.
(4)点关于轴的对称点为,当取最小值时,在抛物线的对称轴上是否存在点,使是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴交于 、 两点, ,交 轴于点 ,对称轴是直线 .
(1)求抛物线的解析式及点 的坐标;
(2)连接 , 是线段 上一点, 关于直线 的对称点 正好落在 上,求点 的坐标;
(3)动点 从点 出发,以每秒2个单位长度的速度向点 运动,过 作 轴的垂线交抛物线于点 ,交线段 于点 .设运动时间为 秒.
①若 与 相似,请直接写出 的值;
② 能否为等腰三角形?若能,求出 的值;若不能,请说明理由.
已知抛物线过点,两点,与轴交于点,.
(1)求抛物线的解析式及顶点的坐标;
(2)过点作,垂足为,求证:四边形为正方形;
(3)点为抛物线在直线下方图形上的一动点,当面积最大时,求点的坐标;
(4)若点为线段上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.
如图,抛物线过点,矩形的边在线段上(点在点的左侧),点、在抛物线上,的平分线交于点,点是的中点,已知,且.
(1)求抛物线的解析式;
(2)、分别为轴,轴上的动点,顺次连接、、、构成四边形,求四边形周长的最小值;
(3)在轴下方且在抛物线上是否存在点,使中边上的高为?若存在,求出点的坐标;若不存在,请说明理由;
(4)矩形不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点、,且直线平分矩形的面积时,求抛物线平移的距离.
如图,二次函数的图象过原点,与轴的另一个交点为
(1)求该二次函数的解析式;
(2)在轴上方作轴的平行线,交二次函数图象于、两点,过、两点分别作轴的垂线,垂足分别为点、点.当矩形为正方形时,求的值;
(3)在(2)的条件下,动点从点出发沿射线以每秒1个单位长度匀速运动,同时动点以相同的速度从点出发沿线段匀速运动,到达点时立即原速返回,当动点返回到点时,、两点同时停止运动,设运动时间为秒.过点向轴作垂线,交抛物线于点,交直线于点,问:以、、、四点为顶点构成的四边形能否是平行四边形.若能,请求出的值;若不能,请说明理由.
如图,抛物线与轴交于点,点,与轴交于点,且过点.点、是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点在直线下方时,求面积的最大值.
(3)直线与线段相交于点,当与相似时,求点的坐标.