已知抛物线y=ax2+bx+c顶点(2,-1),经过点(0,3),且与直线y=x-1交于A,B两点.
(1)求抛物线的解析式;
(2)若在抛物线上恰好存在三点Q,M,N,满足SΔQAB=SΔMAB=SΔNAB=S,求S的值;
(3)在A,B之间的抛物线弧上是否存在点P满足∠APB=90°?若存在,求点P的横坐标;若不存在,请说明理由.
(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=(x1-x2)2+(y1-y2)2)
如图,AB∥DC,∠ABC=∠ADC,问:AE与FC平行吗?请说明理由.
如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移3格,再向右平移4格.请在图中画出平移后的△A′B′C′在图中画出△A′B′C′的高C′D′
观察下列等式:①; ②;③; ④;……猜想并写出第个算式: ;请说明你写出的等式的正确性.把上述个算式的两边分别相加,会得到下面的求和公式吗?请写出具体的推导过程. .我们规定:分子是1,分母是正整数的分数叫做单位分数.任意一个真分数都可以表示成不同的单位分数的和的形式,且有无数多种表示方法.根据上面得出的两个结论,请将真分数表示成不同的单位分数的和的形式.(写出一种即可)
某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:
经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.企业有哪几种购买方案?哪种购买方案更省钱?
如图,抛物线c1:y=ax2-2ax-c与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).求抛物线c1的解析式;问抛物线c1上是否存在P、Q(点P在点Q的上方)两点,使得以A、C、P、Q为顶点的四边形为直角梯形,若存在,求P、Q两点坐标;若不存在,请说明理由;抛物线c2与抛物线c1关于x轴对称,直线x=m分别交c1、c2于D、E两点,直线x=n分别交c1、c2于M、N两点,若四边形DMNE为平行四边形,试判断m和n间的数量关系,并说明理由.