已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.
(1)求抛物线的解析式及顶点D的坐标;
(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;
(3)点P为抛物线在直线BC下方图形上的一动点,当ΔPBC面积最大时,求点P的坐标;
(4)若点Q为线段OC上的一动点,问:AQ+12QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.
先化简,再求值:,其中a2﹣4=0.
如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.正确的有( )个. A、4 B、3 C、2 D、1
(本题满分14分,第(1)小题4分,第(2)小题①6分、第(2)小题②4分)直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角(且≠ 90°),得到Rt△,(1)如图9,当边经过点B时,求旋转角的度数;(2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥交边于点E,联结BE.①当时,设,,求与之间的函数解析式及定义域;②当时,求的长.
(本题满分12分,第(1)小题4分,第(2)小题4分、第(3)小题4分)如图8,在平面直角坐标系xOy中,半径为的与x轴交于、两点,且点C在x轴的上方.(1)求圆心C的坐标;(2)已知一个二次函数的图像经过点、B、C,求这二次函数的解析式;(3)设点P在y轴上,点M在(2)的二次函数图像上,如果以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.
(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图7,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,(1)求证:四边形EBFC是菱形;(2)如果=,求证:.