某超市经销一种销售成本为每件30元的商品.据市场调查分析,如果按每件40元销售,一周能售出500件,若销售单价每涨1元,每周的销售量就减少10件.设销售单价为每件x元(x≥40),一周的销售量为y件.(1)写出y与x的函数关系式(标明x的取值范围);(2)设一周的销售利润为s元,写出s与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大;(3)在超市对该种商品投入不超过8800元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
已知三个一元一次不等式:,,,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来. (1)(2分)你组成的不等式组是 (2)(6分)解:
已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1. (1)求证:△ABE≌△BCF; (2)求出△ABE和△BCF重叠部分(即△BEG)的面积; (3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果可保留根号)
观察图形,解答问题: (1)按下表已填写的形式填写表中的空格:
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.
为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元. (1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵? (2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.