如图,已知抛物线y=13x2+bx+c经过点A(-1,0)、B(5,0).
(1)求抛物线的解析式,并写出顶点M的坐标;
(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;
(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)
观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种的规律可知第5个图形共有________个正方形。
已知如右图:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是__________.
瑞士中学教师巴尔末成功地从光谱数据,…中,发现规律得到巴尔末公式,从而打开了光谱奥妙的大门,请按这种规律写出第7个数据是____________.
数字解密:第一个数3=2+1,第二数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第五至第七个数是什么?
已知:a 与 b 互为相反数,c 与 d 互为倒数,且 (y+1)4=0,求 y3+(a+b)2010-(-cd)2011的值。