如图,已知抛物线y=13x2+bx+c经过点A(-1,0)、B(5,0).
(1)求抛物线的解析式,并写出顶点M的坐标;
(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;
(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)
如图,在⊙O中,点P在直径AB的延长线上,PC,PD与⊙O相切,切点分别为点C,点D,连接CD交AB于点E.如果⊙O的半径等于,tan∠CPO=,求弦CD的长.
解方程:.
某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,公司决定组织一次促销活动,促销期间该产品的售价单位y(元)与销售数量x(件)的函数关系如图所示.(1)求当10≤x≤50时,y与x之间的函数关系式.(2)设商家一次性购买这种产品m件,开发公司所获得的利润为z元,求z与m之间的函数关系式.(3)当商家一次性购买产品的件数超过某一数量时,是否存在随着一次性购买数量的增多,公司所获得的利润反而减少这种情况?若存在,求出在这种情况下,m的取值范围;若不存在,请说明理由.
已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
如图,一次函数与反比例函数的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y>y时x的取值范围;(3)求△AOB的面积.