如图,抛物线y=ax2-2ax+c的图象经过点C(0,-2),顶点D的坐标为(1,-83),与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当ΔAOC∽ΔAEB时,求点E的坐标和AEAB的值.
(3)点F(0,y)是y轴上一动点,当y为何值时,55FC+BF的值最小.并求出这个最小值.
(4)点C关于x轴的对称点为H,当55FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使ΔQHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(广元)李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形. (1)要使这两个正方形的面积之和等于58,李明应该怎么剪这根铁丝? (2)李明认为这两个正方形的面积之和不可能等于48.你认为他的说法正确吗?请说明理由.
(绵阳)解方程:.
(眉山)(本小题满分9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元. (1)购买一支钢笔和一本笔记本各需多少元? (2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?
(泸州)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同). (1)A、B两种花草每棵的价格分别是多少元? (2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.
(凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元. (1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元? (2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?