如图,抛物线y=ax2-2ax+c的图象经过点C(0,-2),顶点D的坐标为(1,-83),与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当ΔAOC∽ΔAEB时,求点E的坐标和AEAB的值.
(3)点F(0,y)是y轴上一动点,当y为何值时,55FC+BF的值最小.并求出这个最小值.
(4)点C关于x轴的对称点为H,当55FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使ΔQHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
在本学期某次考试中,某校初二⑴、初二⑵两班学生数学成绩统计如下表:
请根据表格提供的信息回答下列问题:(1)初二⑴班平均成绩为_________分,初二⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?(2)二⑴班众数为________分,二⑵班众数为________分。(3)初二⑴班及格率为_________,初二⑵班及格率为________。(4)已知二⑴班的方差大于二⑵班的方差,那么说明什么?
某中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C点测得旗杆顶端A的仰角为30°,向前走了6米到达D点,在D点测得旗杆顶端A的仰角为60°(测角器的高度不计).(1) 米;(2)求旗杆AB的高度(结果保留1位小数,).
小明和小亮用图中所示的转盘做游戏:分别转动转盘两次,若两次指针指向的数字之差(第一次数字减第二次的数字)大于或等于2,小明获胜,否则小亮获胜(指针恰好指在等分线上时重新转动转盤). (1)分别求出小明和小亮得分的概率; (2)你认为游戏是否公平?若公平,请说明理由.
解不等式组,并求出它的整数解.
如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与y轴交于点C.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.