如图,在平面直角坐标系中2条直线为 , ,直线 交 轴于点 ,交 轴于点 ,直线 交 轴于点 ,过点 作 轴的平行线交 于点 ,点 、 关于 轴对称,抛物线 过 、 、 三点,下列判断中:
① ;② ;③抛物线关于直线 对称;④抛物线过点 ;⑤ ,
其中正确的个数有
A.5B.4C.3D.2
如图,抛物线 与 轴交于 , 两点,与 轴的正半轴交于点 ,其顶点为 .
(1)写出 , 两点的坐标(用含 的式子表示);
(2)设 ,求 的值;
(3)当 是直角三角形时,求对应抛物线的解析式.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
二次函数 的图象如图所示,若 , .则 、 的大小关系为 .(填“ ”、“ ”或“ ”
已知二次函数 为常数)的图象与 轴有交点,且当 时, 随 的增大而增大,则 的取值范围是
A. B. C. D.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,且此抛物线的顶点坐标为 .
(1)求此抛物线的解析式;
(2)设点 为已知抛物线对称轴上的任意一点,当 与 面积相等时,求点 的坐标;
(3)点 在线段 上,当 与 轴垂直时,过点 作 轴的垂线,垂足为 ,将 沿直线 翻折,使点 的对应点 与 、 、 处在同一平面内,请求出点 坐标,并判断点 是否在该抛物线上.
将二次函数 的图象在 轴上方的部分沿 轴翻折后,所得新函数的图象如图所示.当直线 与新函数的图象恰有3个公共点时, 的值为
A. |
或 |
B. |
或 |
C. |
或 |
D. |
或 |
如图,二次函数 图象的顶点为 ,对称轴是直线 ,一次函数 的图象与 轴交于点 ,且与直线 关于 的对称直线交于点 .
(1)点 的坐标是 ;
(2)直线 与直线 交于点 , 是线段 上一点(不与点 、 重合),点 的纵坐标为 .过点 作直线与线段 、 分别交于点 、 ,使得 与 相似.
①当 时,求 的长;
②若对于每一个确定的 的值,有且只有一个 与 相似,请直接写出 的取值范围 .
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知抛物线 的对称轴为直线 .给出下列结论:
① ;
② ;
③ ;
④ .
其中,正确的结论有
A.1个B.2个C.3个D.4个
如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左边),点 , 在抛物线上.设 ,当 时, .
(1)求抛物线的函数表达式.
(2)当 为何值时,矩形 的周长有最大值?最大值是多少?
(3)保持 时的矩形 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 , ,且直线 平分矩形的面积时,求抛物线平移的距离.