初中数学

如图,在平面直角坐标系中,已知抛物线 y = x 2 + bx + c 与直线 AB 相交于 A B 两点,其中 A ( - 3 , - 4 ) B ( 0 , - 1 )

(1)求该抛物线的函数表达式;

(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 PA PB ,求 ΔPAB 面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 ) ,平移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 E ,使以点 B C D E 为顶点的四边形为菱形,若存在,请直接写出点 E 的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B C 两点,与 y 轴交于点 E ( 0 , 3 )

(1)求抛物线的表达式;

(2)已知点 F ( 0 , 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.

(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M N (点 M N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.

来源:2018年湖南省永州市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知二次函数 y = ( x h ) 2 ( h 为常数),当自变量 x 的值满足 2 x 5 时,与其对应的函数值 y 的最大值为 1 ,则 h 的值为 (    )

A.3或6B.1或6C.1或3D.4或6

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,已知直线 y = 2 x + 4 分别交 x 轴、 y 轴于点 A B ,抛物线过 A B 两点,点 P 是线段 AB 上一动点,过点 P PC x 轴于点 C ,交抛物线于点 D

(1)若抛物线的解析式为 y = 2 x 2 + 2 x + 4 ,设其顶点为 M ,其对称轴交 AB 于点 N

①求点 M N 的坐标;

②是否存在点 P ,使四边形 MNPD 为菱形?并说明理由;

(2)当点 P 的横坐标为1时,是否存在这样的抛物线,使得以 B P D 为顶点的三角形与 ΔAOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

来源:2018年湖南省衡阳市中考数学试卷
  • 更新:2021-05-08
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的图象如图所示,则下列结论中不正确的是 (    )

A.

abc > 0

B.

函数的最大值为 a - b + c

C.

- 3 x 1 时, y 0

D.

4 a - 2 b + c < 0

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象过点 O ( 0 , 0 ) A ( 8 , 4 ) ,与 x 轴交于另一点 B ,且对称轴是直线 x = 3

(1)求该二次函数的解析式;

(2)若 M OB 上的一点,作 MN / / AB OA N ,当 ΔANM 面积最大时,求 M 的坐标;

(3) P x 轴上的点,过 P PQ x 轴与抛物线交于 Q .过 A AC x 轴于 C ,当以 O P Q 为顶点的三角形与以 O A C 为顶点的三角形相似时,求 P 点的坐标.

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的大致图象如图所示,顶点坐标为 ( - 2 , - 9 a ) ,下列结论:① 4 a + 2 b + c > 0 ;② 5 a - b + c = 0 ;③若方程 a ( x + 5 ) ( x - 1 ) = - 1 有两个根 x 1 x 2 ,且 x 1 < x 2 ,则 - 5 < x 1 < x 2 < 1 ;④若方程 | a x 2 + bx + c | = 1 有四个根,则这四个根的和为 - 4 .其中正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2018年湖北省荆门市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

- 1 x 3 时,二次函数 y = x 2 - 4 x + 5 有最大值 m ,则 m =   

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 经过点 ( - 1 , - 1 ) ( 0 , 1 ) ,当 x = - 2 时,与其对应的函数值 y > 1 .有下列结论:

abc > 0

②关于 x 的方程 a x 2 + bx + c - 3 = 0 有两个不等的实数根;

a + b + c > 7

其中,正确结论的个数是 (    )

A.

0

B.

1

C.

2

D.

3

来源:2021年天津市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

二次函数 y a x 2 + bx + c a 0 的图象如图所示,有下列结论:① abc 0 ,② 4 a 2 b + c 0 ,③ a b x ax + b ,④ 3 a + c 0 ,正确的有(  )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 的对称轴为直线 x = 1 .给出下列结论:

ac < 0

b 2 - 4 ac > 0

2 a - b = 0

a - b + c = 0

其中,正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a < 0 ) 过点 E ( 10 , 0 ) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左边),点 C D 在抛物线上.设 A ( t , 0 ) ,当 t = 2 时, AD = 4

(1)求抛物线的函数表达式.

(2)当 t 为何值时,矩形 ABCD 的周长有最大值?最大值是多少?

(3)保持 t = 2 时的矩形 ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 G H ,且直线 GH 平分矩形的面积时,求抛物线平移的距离.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 L 1 : y = x 2 + bx + c 过点 C ( 0 , - 3 ) ,与抛物线 L 2 : y = - 1 2 x 2 - 3 2 x + 2 的一个交点为 A ,且点 A 的横坐标为2,点 P Q 分别是抛物线 L 1 L 2 上的动点.

(1)求抛物线 L 1 对应的函数表达式;

(2)若以点 A C P Q 为顶点的四边形恰为平行四边形,求出点 P 的坐标;

(3)设点 R 为抛物线 L 1 上另一个动点,且 CA 平分 PCR .若 OQ / / PR ,求出点 Q 的坐标.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题