如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线 ,平移后的抛物线与原抛物线相交于点 ,点 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图1,抛物线的顶点 的坐标为 ,抛物线与 轴相交于 、 两点,与 轴交于点 .
(1)求抛物线的表达式;
(2)已知点 ,在抛物线的对称轴上是否存在一点 ,使得 最小,如果存在,求出点 的坐标;如果不存在,请说明理由.
(3)如图2,连接 ,若点 是线段 上的一动点,过点 作线段 的垂线,分别与线段 、抛物线相交于点 、 (点 、 都在抛物线对称轴的右侧),当 最大时,求 的面积.
已知二次函数 为常数),当自变量 的值满足 时,与其对应的函数值 的最大值为 ,则 的值为
A.3或6B.1或6C.1或3D.4或6
如图,已知直线 分别交 轴、 轴于点 、 ,抛物线过 , 两点,点 是线段 上一动点,过点 作 轴于点 ,交抛物线于点 .
(1)若抛物线的解析式为 ,设其顶点为 ,其对称轴交 于点 .
①求点 、 的坐标;
②是否存在点 ,使四边形 为菱形?并说明理由;
(2)当点 的横坐标为1时,是否存在这样的抛物线,使得以 、 、 为顶点的三角形与 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
二次函数 的图象如图所示,则下列结论中不正确的是
A. |
|
B. |
函数的最大值为 |
C. |
当 时, |
D. |
|
如图,已知二次函数的图象过点 , ,与 轴交于另一点 ,且对称轴是直线 .
(1)求该二次函数的解析式;
(2)若 是 上的一点,作 交 于 ,当 面积最大时,求 的坐标;
(3) 是 轴上的点,过 作 轴与抛物线交于 .过 作 轴于 ,当以 , , 为顶点的三角形与以 , , 为顶点的三角形相似时,求 点的坐标.
二次函数 的大致图象如图所示,顶点坐标为 ,下列结论:① ;② ;③若方程 有两个根 和 ,且 ,则 ;④若方程 有四个根,则这四个根的和为 .其中正确的结论有
A.1个B.2个C.3个D.4个
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知抛物线 的对称轴为直线 .给出下列结论:
① ;
② ;
③ ;
④ .
其中,正确的结论有
A.1个B.2个C.3个D.4个
如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左边),点 , 在抛物线上.设 ,当 时, .
(1)求抛物线的函数表达式.
(2)当 为何值时,矩形 的周长有最大值?最大值是多少?
(3)保持 时的矩形 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 , ,且直线 平分矩形的面积时,求抛物线平移的距离.