如图,反比例函数的图象与过点 , 的直线交于点 和 .
(1)求直线 和反比例函数的解析式;
(2)已知点 ,直线 与反比例函数图象在第一象限的交点为 ,直接写出点 的坐标,并求 的面积.
如图,直线 与反比例函数 的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.
(1)m= ,n= ;若 是反比例函数图象上两点,且 ,则y1 y2(填“<”或“=”或“>”);
(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.
如图, ,反比例函数 的图象过点 ,反比例函数 的图象过点 ,且 轴.
(1)求 和 的值;
(2)过点 作 ,交 轴于点 ,交 轴于点 ,交双曲线 于另一点 ,求 的面积.
已知一次函数y=k1x+b与反比例函数 的图象交于第一象限内的P( ,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.
已知直线 与 轴交于点 ,与 轴交于点 ,且与双曲线 交于点 .
(1)试确定双曲线的函数表达式;
(2)将 沿 轴翻折后,得到 ,画出 的图象,并求出 的函数表达式;
(3)在(2)的条件下,点 是线段 上点(不包括端点),过点 作 轴的平行线,分别交 于点 ,交双曲线于点 ,求 的取值范围.
如图,一次函数 y= k 1 x+ b的图象与反比例函数 y= 的图象相交于 A、 B两点,其中点 A的坐标为(﹣1,4),点 B的坐标为(4, n).
(1)根据图象,直接写出满足 k 1 x+ b> 的 x的取值范围;
(2)求这两个函数的表达式;
(3)点 P在线段 AB上,且 S △ AOP: S △ BOP=1:2,求点 P的坐标.
已知一次函数 与反比例函数 的图象交于 、 两点.
(1)求一次函数和反比例函数的表达式;
(2)求 的面积;
(3)点 在 轴上,当 为等腰三角形时,直接写出点 的坐标.
已知反比例函数 y= 的图象在二四象限,一次函数为 y= kx+ b( b>0),直线 x=1与 x轴交于点 B,与直线 y= kx+ b交于点 A,直线 x=3与 x轴交于点 C,与直线 y= kx+ b交于点 D.
(1)若点 A, D都在第一象限,求证: b>﹣3 k;
(2)在(1)的条件下,设直线 y= kx+ b与 x轴交于点 E与 y轴交于点 F,当 = 且△ OFE的面积等于 时,求这个一次函数的解析式,并直接写出不等式 > kx+ b的解集.
如图,已知点A(1,a)是反比例函数 的图象上一点,直线 与反比例函数 的图象在第四象限的交点为点B.
(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
如图,在平面直角坐标系中,直线y=2x与反比例函数 在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数 在第一象限内的图象交于点P,且△POA的面积为2.
(1)求k的值.
(2)求平移后的直线的函数解析式.
如图,一次函数 与反比例函数 的图象交于点 , .
(1)求反比例函数和一次函数的解析式;
(2)判断点 是否在一次函数 的图象上,并说明理由;
(3)写出不等式 的解集.
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
如图,在平面直角坐标系中,一次函数 和 的图象相交于点 ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为 ,连接 ,求 的面积.
已知、两点是一次函数和反比例函数图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)观察图象,直接写出不等式的解集.