如图,直线 与反比例函数 的图象交于 , 两点,过 作 轴于点 ,过 作 轴于点 ,
(1)求 , 的值及反比例函数的解析式;
(2)请问:在直线 上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系 中,反比例函数 的图象经过等边三角形 的顶点 , ,点 在反比例函数图象上,连接 , .
(1)求反比例函数 的表达式;
(2)若四边形 的面积是 ,求点 的坐标.
如图,在平面直角坐标系中, 为坐标原点, 的边 垂直与 轴,垂足为点 ,反比例函数 的图象经过 的中点 ,且与 相交于点 , , ,
(1)求反比例函数 的解析式;
(2)求 的值;
(3)求经过 、 两点的一次函数解析式.
如图,在平面直角坐标系 中,一次函数 的图象与反比例函数 的图象相交于点 , ,与 轴相交于点 .
(1)求此反比例函数和一次函数的表达式;
(2)求点 的坐标及 的面积.
如图,直线 与反比例函数 的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.
(1)m= ,n= ;若 是反比例函数图象上两点,且 ,则y1 y2(填“<”或“=”或“>”);
(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.
如图,在平面直角坐标系 xOy中,菱形 ABCD的对角线 AC与 BD交于点 P(﹣1,2), AB⊥ x轴于点 E,正比例函数 y= mx的图象与反比例函数 y= 的图象相交于 A, P两点.
(1)求 m, n的值与点 A的坐标;
(2)求证:△ CPD∽△ AEO;
(3)求sin∠ CDB的值.
设 P( x,0)是 x轴上的一个动点,它与原点的距离为 y 1.
(1)求 y 1关于 x的函数解析式,并画出这个函数的图象;
(2)若反比例函数 y 2= 的图象与函数 y 1的图象相交于点 A,且点 A的纵坐标为2.
①求 k的值;
②结合图象,当 y 1> y 2时,写出 x的取值范围.
已知反比例函数 y= ( k为常数).
(1)若点 P 1( , y 1)和点 P 2(﹣ , y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较 y 1和 y 2的大小;
(2)设点 P( m, n)( m>0)是其图象上的一点,过点 P作 PM⊥ x轴于点 M.若tan∠ POM=2, PO= ( O为坐标原点),求 k的值,并直接写出不等式 kx+ >0的解集.
如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数 的图象上.
(1)求反比例函数 的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP= S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
已知 ( ab≠0且 a≠ b)
(1)化简 A;
(2)若点 P( a, b)在反比例函数 y=﹣ 的图象上,求 A的值.
阅读理解:
材料一:若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成"和谐三数组".
材料二:若关于 的一元二次方程 的两根分别为 , ,则有 , .
问题解决:
(1)请你写出三个能构成"和谐三数组"的实数 ;
(2)若 , 是关于 的方程 , , 均不为 的两根, 是关于 的方程 , 均不为 的解.求证: , , 可以构成"和谐三数组";
(3)若 , , 三个点均在反比例函数 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 的值.
阅读理解:
材料一:若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成"和谐三数组".
材料二:若关于 的一元二次方程 的两根分别为 , ,则有 , .
问题解决:
(1)请你写出三个能构成"和谐三数组"的实数 ;
(2)若 , 是关于 的方程 , , 均不为 的两根, 是关于 的方程 , 均不为 的解.求证: , , 可以构成"和谐三数组";
(3)若 , , 三个点均在反比例函数 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 的值.
如图,在平面直角坐标系中, 为坐标原点,点 , 在函数 的图象上(点 的横坐标大于点 的横坐标),点 的坐标为 ,过点 作 轴于点 ,过点 作 轴于点 ,连接 , .
(1)求 的值.
(2)若 为 中点,求四边形 的面积.
如图,在平面直角坐标系中,反比例函数的图象经过点,点在轴的负半轴上,交轴于点,为线段的中点.
(1) ,点的坐标为 ;
(2)若点为线段上的一个动点,过点作轴,交反比例函数图象于点,求面积的最大值.