如图,一次函数 与反比例函数 的图象交于点 , .
(1)求反比例函数和一次函数的解析式;
(2)判断点 是否在一次函数 的图象上,并说明理由;
(3)写出不等式 的解集.
如图,将一把矩形直尺 和一块等腰直角三角板 摆放在平面直角坐标系中, 在 轴上,点 与点 重合,点 在 上, 交 于点 ,反比例函数 的图象恰好经过点 , ,若直尺的宽 ,三角板的斜边 ,则 .
在平面直角坐标系中,对于不在坐标轴上的任意一点 ,我们把点 , 称为点 的"倒数点".如图,矩形 的顶点 为 ,顶点 在 轴上,函数 的图象与 交于点 .若点 是点 的"倒数点",且点 在矩形 的一边上,则 的面积为 .
如图,在平面直角坐标系中,矩形 的对角线 的中点与坐标原点重合,点 是 轴上一点,连接 .若 平分 ,反比例函数 的图象经过 上的两点 , ,且 , 的面积为18,则 的值为
A.6B.12C.18D.24
如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.
设 , , , 是反比例函数 图象上的任意四点,现有以下结论:
①四边形 可以是平行四边形;
②四边形 可以是菱形;
③四边形 不可能是矩形;
④四边形 不可能是正方形.
其中正确的是 .(写出所有正确结论的序号)
从 ,2, ,4这四个数中任取两个不同的数分别作为 , 的值,得到反比例函数 ,则这些反比例函数中,其图象在二、四象限的概率是 .
在反比例函数 为常数)上有三点 , , , , , ,若 ,则 , , 的大小关系为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在直角坐标系中,直线 与双曲线 分别相交于第二、四象限内的 , 两点,与 轴相交于 点.已知 , .
(1)求 , 对应的函数表达式;
(2)求 的面积;
(3)直接写出当 时,不等式 的解集.
关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.
甲:函数图象经过点 ;
乙:函数图象经过第四象限;
丙:当 时, 随 的增大而增大.
则这个函数表达式可能是
A. |
|
B. |
|
C. |
|
D. |
|