高中数学

如图,在三棱锥中,△和△都为正三角形且分别是棱的中点,的中点.

(1)求异面直线所成的角的大小;
(2)求证:直线平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线交于A,B两点.
(1)求的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知数列的首项,前项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设函数是函数的导函数,令,求数列的通项公式,并研究其单调性.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,过椭圆内一点的动直线与椭圆相交于M,N两点,当平行于x轴和垂直于x轴时,被椭圆所截得的线段长均为.

(1)求椭圆的方程;
(2)在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点的动直线都满足?若存在,求出定点B的坐标,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设曲线表示的导函数。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)求函数的极值;
(Ⅲ)当时,对于曲线上的不同两点,是否存在唯一,使直线的斜率等于?并证明你的结论。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知三棱锥的侧棱两两垂直,且的中点。

(1)求异面直线所成角的余弦值;
(2)求和平面所成角的正弦值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知


已知直线被圆截得的弦长恰与椭圆的短轴长相等,椭圆的离心率
(1)求椭圆的方程;
(2)已知过点的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知双曲线的焦点为,且离心率为2;
(1)求双曲线的标准方程;
(2)若经过点的直线交双曲线两点,且的中点,求直线的方程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,E,F分别为棱AB,PC的中点

(1)求证:PE⊥BC;
(2)求证:EF∥平面PAD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若直线ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣4y+1=0截得的弦长为4,则的最小值为( )

A. B. C.+ D.+2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数上有最大值1和最小值0,设
为自然对数的底数).
(1)求的值;
(2)若不等式上有解,求实数的取值范围;
(3)若方程有三个不同的实数解,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知数列为等差数列,的前和为,数列为等
比数列,且对任意的恒成立.
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.
(Ⅲ)各项均为正整数的无穷等差数列,满足,且存在正整数k,使成等比数列,若数列的公差为d,求d的所有可能取值之和.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图程序运行的结果是          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,中,的中点,.将沿折起,使点与图中点重合.

(1)求证:平面
(2)当三棱锥的体积取最大时,求二面角的余弦值;
(3)在(2)条件下,试问在线段上是否存在一点,使与平面所成角的正弦值为?证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.

(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)


0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879

 
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:.其中.)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学试题