在平面直角坐标系中,已知矩形的长为2,宽为1,边分别在x轴、y轴的正半轴上,点与坐标原点重合(如图4所示),将矩形折叠,使点落在线段上.
(Ⅰ)若折痕所在直线的斜率为,试写出折痕所在直线的方程;
(Ⅱ)设折痕线段为EF,记,求的解析式.
设数列中,(c为常数,),且是公比不为1的等比数列。
(1)求c的值;
(2)求数列的通项公式
(本小题满分12分)
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用)
某工厂生产一种产品的成本费由三部分组成:① 职工工资固定支出元;② 原材料费每件40元;③ 电力与机器保养等费用为每件元,其中是该厂生产这种产品的总件数.
(1)把每件产品的成本费P(x)(元)表示成产品件数的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量不超过件,且产品能全部销售.根据市场调查:每件产品的销售价与产品件数有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额—总的成本)
(本小题满分12分) (Ⅰ)小问7分,(Ⅱ)小问5分.)
已知O为坐标原点,向量=(sinα,1),=(cosα,0),=(-sinα,2),点P是直线AB上的一点,且点B分有向线段的比为1.
(1)记函数f(α)=·,α∈,讨论函数f(α)的单调性,并求其值域;
(2)若O、P、C三点共线,求|+|的值.
(本小题满分12分)已知函数,
且函数的最小正周期为
(1)若,求函数的单调递减区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得到的图象再向左平移个单位,得到函数的图象,求函数在区间上的最小值。