(本小题满分12分) (Ⅰ)小问7分,(Ⅱ)小问5分.)已知O为坐标原点,向量=(sinα,1),=(cosα,0),=(-sinα,2),点P是直线AB上的一点,且点B分有向线段的比为1.(1)记函数f(α)=·,α∈,讨论函数f(α)的单调性,并求其值域;(2)若O、P、C三点共线,求|+|的值.
(本小题12分)在甲、乙两个盒子中分别装有标号为的三个大小相同的球,现从甲、乙两个盒子中各取出个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)求取出的两个球上标号之和不小于的概率.
(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
(本小题12分)命题:关于的不等式对于一切恒成立,命题:函数是增函数,若为真,为假,求实数的取值范围;
(本小题10分)某种产品的广告费用支出与销售额之间有如下的对应数据:
(1)求对的回归直线方程;(2)据此估计广告费用为10销售收入的值.参考公式:
(本小题满分12分)已知偶函数的定义域为,且在上是增函数.(Ⅰ)试比较与的大小;(Ⅱ)若,求不等式的解集.