(本小题满分12分)在中,角所对的边分别为且满足(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小.
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=
已知函数.(1)解不等式;(2)若,求证:
解关于不等式
设函数(1)若a>0,求函数的最小值;(2)若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f (x)>b恒成立的概率。
两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.