设函数,其中为正实数.
(Ⅰ)若是函数的极值点,讨论函数的单调性;
(Ⅱ)若在上无最小值,且在上是单调增函数,求的取值范围,并由此判断曲线与曲线在交点个数.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.用表示取球终止时所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量的概率分布;
(3)求甲取到白球的概率.
已知.
(1)求的单调区间;
(2)令,则时有两个不同的根,求的取值范围;
(3)存在,且,使成立,求的取值范围.
已知函数的导数,,(a,b为实数),.
(1)若在区间上的最小值、最大值分别为,求a,b的值;
(2)设函数,试判断函数的极值点个数.
正的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将沿CD翻折成直二面角A-DC-B.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使?若存在,请指出P点的位置,若存在,请说明理由.
已知抛物线与圆的两个交点之间的距离为4.
(1)求的值;
(2)设过抛物线的焦点且斜率为的直线与抛物线交于两点,与圆交于两点,当时,求的取值范围.
已知函数,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;
(Ⅲ)若关于的方程有两个正实根,求证:.