已知命题曲线与轴相交于不同的两点;命题表示焦点在轴上的椭圆,.若“且”是假命题,“或”是真命题,求的取值范围.
已知函数f(x)=2x2+bx可化为f(x)=2(x+m)2-4的形式.其中b>0.求f(x)为增函数的区间.
已知二次函数f(x)=a+bx(a,b是常数且a0)满足条件:f(2)=0.方程f(x)=x有等根(1)求f(x)的解析式;(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,说明理由.
已知函数f(x)=2(m-1)-4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.
求方程的无理根(精确到0.01)
设函数,且,其中是自然对数的底数.(1)求与的关系;(2)若在其定义域内为单调函数,求的取值范围;(3)设,若在上至少存在一点,使得>成立,求实数的取值范围.