已知命题;命题表示焦点轴上的椭圆,若,求实数的取值范围.
如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°.(Ⅰ)求证:AC⊥A1B;(Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且(Ⅰ)求数列{an}和{bn}的通项公式:(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
设正有理数x是的一个近似值,令.(Ⅰ)若;(Ⅱ)比较y与x哪一个更接近于,请说明理由.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆C的交点为O,P,与直线的交点为Q,求线段PQ的长.
如图,、、是圆上三点,是的角平分线,交圆于,过作圆的切线交的 延长线于.(Ⅰ)求证:;(Ⅱ)求证:.