如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°.(Ⅰ)求证:AC⊥A1B;(Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程
已知两直线,当为何值时,与(1)相交;(2)平行;(3)重合?
(本小题满分16分)已知函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)试判断函数在(,)上的单调性,并证明你的结论;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分16分)已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为(Ⅰ)求f()的值;(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.