(本小题满分13分)椭圆:与抛物线:的一个交点为M,抛物线在点M处的切线过椭圆的右焦点F.(Ⅰ)若M,求和的标准方程;(II)求椭圆离心率的取值范围.
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.
如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点. (1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.
已知点集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.(1)求数列{an},{bn}的通项公式;(2)求·OPn+1的最小值;(3)设cn= (n≥2),求c2+c3+c4+…+cn的值.
已知数列{2n-1·an}的前n项和Sn=1-.(1)求数列{an}的通项公式;(2)设bn=,求数列的前n项和.
在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.