){}、{}都是各项为正的数列,对任意的,都有、、成等差数列,、、成等比数列.(1) 试问{}是否为等差数列,为什么?(2) 如=1,=,求;
已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,. (1)求抛物线的方程; (2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。 (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小.
已知函数. (1)求的单调递增区间; (2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且,求a的值.
已知数列的前n项和为,. (1)求; (2)求证:数列是等比数列; (3)求.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)当时,解不等式; (Ⅱ)若的最小值为1,求a的值.