某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)
(本小题10分)求经过两直线3x + 4y – 5 = 0与2x – 3y + 8 = 0的交点M,且与直线L1:2x + y + 5 = 0平行的直线L2的方程,并求L1与L2间的距离。
.本小题10分)已知圆台的上下底面半径分别是2、4,且侧面面积等于两底面面积之和,求该圆台的母线长.(参考公式:)
(本小题满分14分)已知函数,其中。。(1)若是函数的极值点,求实数a的值;(2)若函数的图象上任意一点处切线的斜率恒成立,求实数a的取值范围;(3)若函数在上有两个零点,求实数a的取值范围。
(本小题满分14分) 如图,已知直线与抛物线相交于两点,与轴相交于点,若.(1)求证:点的坐标为(1,0);(2)求△AOB的面积的最小值.
(本小题满分13分)右图为一简单组合体,其底面为正方形,平面,//,且=。(1)求证://平面;(2)若为线段的中点,求证:平面;(3)若,求平面与平面所成的二面角的大小。