已知函数f(x)对任意实数x均有f(x)="k" f(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)。⑴求f(-1),f(2.5)的值(用k表示);⑵写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明);⑶求出f(x)在[-3,2]上最小值与最大值,并求出相应的自变量的取值。
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点. (1)证明:PF⊥FD; (2)判断并说明PA上是否存在点G,使得EG∥平面PFD; (3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
已知圆C:x2+y2+2x-4y+3=0. (1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程; (2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
设命题p:在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.
已知集合A={x|1<ax<2},集合B={x||x|<1}.当AB时,求a的取值范围.
已知函数,当时,. (1)若函数在区间上存在极值点,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围; (3)试证明:.