某食品厂定期购买面粉。已知该厂每天需用面粉6t,每t面粉的价格为1800元,面粉的保管等其他费用为平均每t每天3元,购买面粉每次需支付运费900元. 求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
已知椭圆的焦点在轴上,长轴长为,离心率为. (1)求椭圆的标准方程; (2)已知点和直线:,线段是椭圆的一条弦且直线垂直平 分弦,求实数的值.
已知是函数的一个极值点. (1)求的值; (2)求在区间上的最值.
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为. (1)求椭圆方程; (2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。 (1)求证:平面ABCD; (2)求二面角E—AC—D的正切值.
在平面直角坐标系O中,直线与抛物线=2相交于A、B两点。 (1)求证:命题“如果直线过点T(3,0),那么=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。