高中数学


如图,

已知四边形均为直角梯形,,且,平面⊥平面,
(Ⅰ)证明:平面
(Ⅱ)求平面和平面所成锐二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

选修4-5:不等式选讲
设函数 的最小值为
(1)求;
(2)已知两个正数满足,求的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

选修4-4:极坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系的长度单位相同.已知曲线的极坐标方程为,斜率为的直线轴于点
(1)求曲线的直角坐标方程,直线的参数方程;
(2)若直线与曲线交于两点,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点.

(Ⅰ)证明:MN∥平面A′ACC′;
(Ⅱ)求三棱锥A′﹣MNC的体积.
(椎体体积公式V=Sh,其中S为底面面积,h为高)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知集合A={x|1≤x≤a},B={y|y=5x﹣6,x∈A},C={m|m=x2,x∈A}且B∩C=C,求a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=x2+2ax+2,x∈[﹣5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=2+x,其中1≤x≤9,求函数y=[f(x)]2+f(x)的最大值和最小值,并求出相应x的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数f(x)满足条件:f(0)=1,f(x+1)=f(x)+2x
(Ⅰ)求f(x);
(Ⅱ)讨论二次函数f(x)在闭区间[t,t+1](t∈R)上的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知集合A={x|x2﹣x﹣2>0},函数g(x)=的定义域为集合B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且C⊆A,求实数P的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知定义域为R的奇函数f(x),当x>0时,f(x)=x2﹣3.
(1)当x<0时,求函数f(x)的解析式;
(2)求函数f(x)在R上的解析式;
(3)解方程f(x)=2x.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

考取驾照是一个非常严格的过程,有的人并不能一次性通过,需要进行补考,现在有一张某驾校学员第一次考试结果汇总表:

(1)完成列联表
(2)根据列联表判断性别与考试成绩是否有关系,如果有关系求出精确地可信度,没关系请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学解答题