如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′﹣MNC的体积.(椎体体积公式V=Sh,其中S为底面面积,h为高)
设函数f(x)=﹣x3+2ax2﹣3a2x+b,0<a<1. (1)求函数f(x)的单调区间、极值; (2)若x∈[0,3a],试求函数f(x)的最值.
已知函数f(x)=﹣x3+3x2+9x+a. (Ⅰ)求f(x)的单调递减区间; (Ⅱ)若f(x)在区间[﹣2,2]上的最大值为20,求它在该区间上的最小值.
已知函数f(x)=x3﹣3x. (1)求函数f(x)在[﹣3,]上的最大值和最小值; (2)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程.
已知函数f1(x)=sinx,且fn+1(x)=fn′(x),其中n∈N*,求f1(x)+f2(x)+…+f100(x)的值.
已知P(﹣1,1),Q(2,4)是曲线y=x2上的两点,求与直线PQ平行且与曲线相切的切线方程.