已知椭圆上的动点到焦点距离的最小值为。以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,为椭圆上一点, 且满足(为坐标原点)。当 时,求实数的值.
设,其中为正整数. (1)求,,的值; (2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.
设函数. (1)当时,解关于的不等式; (2)如果,,求的取值范围.
已知圆经过点、,并且直线:平分圆. (Ⅰ)求圆的方程; (Ⅱ)若过点,且斜率为的直线与圆有两个不同的交点. (ⅰ)求实数的取值范围; (ⅱ)若,求的值.
设两个向量、,满足,,、的夹角为,若向量与向量的夹角为钝角,求实数的取值范围.
在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人. (Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数; (Ⅱ)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分; (Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.