在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:(Ⅰ)得50分的概率;(Ⅱ)设该考生所得分数为,求的数学期望.
如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE 折成直二面角D-EC-AB. (1)求直线BD与平面ABCE所成角的正切值; (2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,, E是侧棱AA1的中点,求 (1)求异面直线与B1E所成角的大小; (2)求四面体的体积.
已知双曲线的两个焦点为的曲线C上.(Ⅰ)求双曲线C的方程; (Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程
直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
在中,内角A,B,C所对的分别是a, b,c。已知a=2.c=, A=. (I)求sin C和b的值; (II)求 (2A+)的值.