(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为.(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;(Ⅱ)若规定每投蓝一次命中得3分,未命中得-1分,求乙所得分数的概率分布和数学期望.
如图,在直三棱柱中,点是的中点.(1)求证:∥平面;(2)若,,求点到平面的距离.
已知函数,.(1)求的单调增区间和最小值;(2)若函数与函数在交点处存在公共切线,求实数的值;(3)若时,函数的图象恰好位于两条平行直线,之间,当与间的距离最小时,求实数的值.
如图,为一直角三角形草坪,其中,米,米,为了重建草坪,设计师准备了两套方案:方案一:扩大为一个直角三角形,其中斜边过点,且与平行,过点,过点;方案二:扩大为一个等边三角形,其中过点,过点,过点.(1)求方案一中三角形面积的最小值;(2)求方案二中三角形面积的最大值.
在等差数列中,,其前项和为,等比数列的各项均为正数,,其前项和为,且,.(1)求数列和数列的通项;(2)问是否存在正整数,,,使得成立?如果存在,请求出,,的关系式;如果不存在,请说明理由.
已知椭圆()的离心率为,.分别为椭圆的左.右焦点,若椭圆的焦距为.(1)求椭圆的方程;(2)设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求面积的最大值.