已知函数.
(1)当时,求在处的切线方程;
(2)设函数,
(ⅰ)若函数有且仅有一个零点时,求的值;
(ⅱ)在(ⅰ)的条件下,若,,求的取值范围。
已知命题,函数的值大于.若是真命题,则命题可以是( )
A.,使得 |
B.“”是“函数在区间上有零点”的必要不充分条件 |
C.是曲线的一条对称轴 |
D.若,则在曲线上任意一点处的切线的斜率不小于 |
已知函数f(x)=-aln x++x(a≠0),
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.
已知函数f(x)=,且f(x)的图象在x=1处与直线y=2相切.
(1)求函数f(x)的解析式;
(2)若P(x0,y0)为f(x)图象上的任意一点,直线l与f(x)的图象切于P点,求直线l的斜率k的取值范围.
已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切线方程为2y-1=0.
(1)求g(x)的解析式;
(2)设函数G(x)=若方程G(x)=a2有且仅有四个解,求实数a的取值范围.
设函数.
(Ⅰ)当时,求曲线在处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数,若对于,,使成立,求实数的取值范围.
已知函数f(x)=k(x﹣1)ex+x2.
(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.
已知函数
(1)求函数的单调区间;
(2)当时,过原点分别作曲线和的切线,已知两切线的斜率互为倒数,证明:;
(3)设,当时,求实数的取值范围.
已知图像过点,且在处的切线方程是.
(1)求的解析式;
(2)求在区间上的最大值和最小值.
已知函数,其中.
(1)当时,求函数在处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数在处取得最小值,试求的最大值.