已知曲线f (x ) = ax 2 +2在x=1处的切线与2x-y+1=0平行.
求由曲线y="f" (x ) 与所围成的平面图形的面积.
已知函数的导数满足,,其中常数,求曲线在点处的切线方程.
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
已知是定义在R上的函数,其图象交轴于A、B、C三点,若B点坐标为,且在和上有相同的单调性,在和上有相反的单调性.
(1)求的值;
(2)在函数的图象上是否存在一点,使得在点M的切线的斜率为?若存在,求出M点的坐标;若不存在,说明理由;
(3)求的取值范围.
已知函数f (x)=lnx,g(x)=ex.
(I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.