已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.(1)求使直线l和y=f(x)相切且以P为切点的直线方程;(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
已知向量,,对任意都有. (1)求的最小值; (2)求正整数,使
在中,角所对的边分别为,函数在处取得最大值. (1)求角A的大小. (2)若且,求的面积.
已知函数(、为常数),在时取得极值. (1)求实数的取值范围; (2)当时,关于的方程有两个不相等的实数根,求实数的取值范围; (3)数列满足(且),,数列的前项和为, 求证:(,是自然对数的底).
设定圆,动圆过点且与圆相切,记动圆圆心的轨迹为. (1)求轨迹的方程; (2)已知,过定点的动直线交轨迹于、两点,的外心为.若直线的斜率为,直线的斜率为,求证:为定值.
已知数列前项和为,向量与,且, (1)求数列的通项公式; (2)求的前项和,不等式对任意的正整数恒成立,求的取值范围.