已知是定义在R上的函数,其图象交轴于A、B、C三点,若B点坐标为,且在和上有相同的单调性,在和上有相反的单调性.(1)求的值;(2)在函数的图象上是否存在一点,使得在点M的切线的斜率为?若存在,求出M点的坐标;若不存在,说明理由;(3)求的取值范围.
如图,在直三棱柱 A 1 B 1 C 1 - A B C 中, A B ⊥ A C , A B = A C = 2 , A A 1 = 4 ,点 D 是 B C 的中点.
(1)求异面直线 A 1 B 与 C 1 D 所成角的余弦值; (2)求平面 A D C 1 与平面 A B A 1 所成二面角的正弦值.
已知 a ≥ b > 0 ,求证: 2 a 3 - b 3 ≥ 2 a b 2 - a 2 b .
在平面直角坐标系 x O y 中,直线 l 的参数方程为 x = t + 1 y = 2 t ,( t 为参数),曲线 C 的参数方程为 x = 2 tan 2 θ y = 2 tan θ ,( θ 为参数),试求直线 l 和曲线 C 的普通方程,并求它们的公共点的坐标.
已知矩阵 A = [ - 1 0 0 2 ] , B = [ 0 2 1 6 ] ,求矩阵 A - 1 B .
A B 、 B C 分别与圆 O 相切于 D 、 C , A C 经过圆心 O ,且 B C = 2 O C ,求证: A C = 2 A D .