高中数学

已知函数 = 与 的图象都过点 P(2, 0), 且
在点P 处有公共切线, 求  的表达式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象过点P, 且在点M处的切线方程为.
(1) 求函数的解析式;       (2) 求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 , .  
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,过点作曲线的切线,求切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)求过点P(2,2)且与曲线y=x2相切的直线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值; 
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=x-ax+(a-1)
(1)讨论函数的单调性;       
(2)证明:若,则对任意x,x,xx,有

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为
(Ⅰ)求的值;
(Ⅱ)求函数的单调递增区间,并求函数上的最大值和最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)函数
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

  如图,由y=0,x=8,y=x2围成的曲边三角形,在曲线弧OB上求一点M,使得过M所作的y=x2的切线PQ与OA,AB围成的三角形PQA面积最大。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(6分)(1) 求三次曲线过点(2, 8)的切线方程;
(2)求曲线过点(0,0)的切线方程。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,在点处的切线方程是(e为自然对数的底)。
(1)求实数的值及的解析式;
(2)若是正数,设,求的最小值;
(3)若关于x的不等式对一切恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若函数处取得极值,
(1)求的值;
(2)求上的最大值和最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)(1)求函数的导数.
(2)求函数f(x)=在区间[0,3]上的积分.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数.
(1) 求的单调区间与极值;
(2)是否存在实数,使得对任意的,当时恒有成立.若存在,求的范围,若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题