高中数学

已知 a为实数,= 
(1)求导函数  
(2)若 , 求  在 [-2, 2] 上的最大值和最小值;
(3)若  在 (-∞, -2]和 [2, +∞) 上都是递增的, 求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知x=3是函数f(x)=alnx+x2-10x的一个极值点.
(1)求实数a;
(2)求函数f(x)的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数.
(Ⅰ)试问函数能否在时取得极值?说明理由;
(Ⅱ)若时,函数的图像有两个公共点,求c
的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数有两个极值点,且直线与曲线相切于点.
(1) 求
(2) 求函数的解析式;
(3) 在为整数时,求过点和相切于一异于点的直线方程

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 ,其中R.
(1)若曲线在点处的切线方程为,求函数的解析
式;
(2)当时,讨论函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,曲线上点处的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下求上的最值及相应的的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求曲线y=f(x)在(1,11)处的切线方程;(Ⅱ)求函数的单调区间
(Ⅲ)求函数在[-2,2]上的最值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)设函数(其中是自然对数的底数)
(I)若处的切线方程;
(II)若函数上有两个极值点.
①实数m的范围;    ②证明的极小值大于e.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数图象上一点
的切线方程为y= -3x+2ln2+2.
(1)求a,b的值;
(2)若方程内有两个不等实根,求m的取值范围(其
为自然对数的底数);

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象过点P(0,2),且在点M处的切线方程为.
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若的图象在点处的切线方程为,求在区间上的最大值;
(2)当时,若在区间上不单调,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)设,且曲线处的切线与轴平行
(1)求的值,并讨论的单调性;
(2)证明:当时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象在点处的切线的斜率为2.
(Ⅰ)求实数的值;
(Ⅱ)设,讨论的单调性;
(Ⅲ)已知,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求
的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题