设函数.(Ⅰ)试问函数能否在时取得极值?说明理由;(Ⅱ)若当时,函数与的图像有两个公共点,求c 的取值范围.
某同学用“五点法”画函数在某一个周期的图象时,列表并填入的部分数据如下表: (1)求,,的值及函数的表达式; (2)将函数的图象向左平移个单位,可得到函数的图象,求函数在区间的最小值.
小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个. (Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率; (Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.
已知函数部分图象如图所示。 (1)求函数的解析式; (2)当时,求函数的值域。
选修4—5:不等式选讲 已知函数,. (Ⅰ)当时,求不等式的解集; (Ⅱ)设,且当时,,求a的取值范围.
选修4—4:坐标系与参数方程 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.