高中数学

已知函数的导数满足,其中常数,求曲线在点处的切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)已知函数f(x)=x-ax+(a-1)。讨论函数的单调性;       
(2).已知函数f (x)=lnxg(x)=ex.设直线l为函数 yf (x) 的图象上一点A(x0f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在曲线yx3x-1上求一点P,使过P点的切线与直线4xy=0平行.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由.
(Ⅲ)关于的方程上恰有两个相异实根,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若曲线处的切线的方程为,求实数a的值;
(2)求证:≥0恒成立的充要条件是
(3)若,且对任意,都有,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数R,曲线在点处的切线方程为
(Ⅰ)求的解析式;
(Ⅱ)当时,恒成立,求实数的取值范围;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 ()
(1)若函数的图象在处的切线方程为,求的值;
(2)若函数为增函数,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数处取得极值,过点作曲线的切线,(1)求此切线的方程.(2)求切线与函数的图象围成的平面图形的面积。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)若曲线处的切线与直线平行,求a的值;
(2)当时,求的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x)=-ax,g(x)=b+2b-1.
(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;
(2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
若曲线处的切线与直线平行,求a的值;
时,求的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=x3+3ax-1的导函数f ′ (x),g(x)=f ′(x)-ax-3.
(1)当a=-2时,求函数f(x)的单调区间;
(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(3)若x·g ′(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当a=0时,求与直线x-y-10 =0平行,且与曲线y=f(x)相切的直线的方程;
(2)求函数的单调递减区间;
(3)如果存在,使函数在x=-3处取得最大值,试求b的最大值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题