(本小题满分13分)
函数,数列
和
满足:
,
,函数
的图像在点
处的切线在
轴上的截距为
.
(1)求数列{}的通项公式;
(2)若数列的项中仅
最小,求
的取值范围;
(3)若函数,令函数
数列
满足:
且
证明:
.
已知函数f(x)=x2﹣(a+2)x+alnx(a为实常数).
(Ⅰ)若a=﹣2,求曲线 y=f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)在[1,e]上的单调性;
(Ⅲ)若存在x∈[1,e],使得f(x)≤0成立,求实数a的取值范围.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1;
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知函数.
(1)当时,求
在
处的切线方程;
(2)设函数,
(ⅰ)若函数有且仅有一个零点时,求
的值;
(ⅱ)在(ⅰ)的条件下,若,
,求
的取值范围。
已知曲线:
(1)试求曲线在点
处的切线方程;
(2)试求与直线平行的曲线C的切线方程.
已知函数f(x)=k(x﹣1)ex+x2.
(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.
已知函数R).
(1)若曲线在点
处的切线与直线
平行,求
的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且
时,证明:
已知函数,
.
(1)当时,求函数
在
处的切线方程;
(2)是否存在实数,使得对任意的
,恒有
成立?若存在,求出实数
的取值范围;若不存在,请说明理由.
已知函数在
处取得极值.
(1)求a、b的值;
(2)求过点且与曲线
相切的切线方程.
(本小题满分13分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数
和
在点P处相切,称点P为这两个函数的切点.设函数
,
.
(Ⅰ)当,
时,判断函数
和
是否相切?并说明理由;
(Ⅱ)已知,
,且函数
和
相切,求切点P的坐标;
(Ⅲ)设,点P的坐标为
,问是否存在符合条件的函数
和
,使得它们在点P处相切?若点P的坐标为
呢?(结论不要求证明)
已知函数的导函数为
,
的图象在点
,
处的切线方程为
,且
,直线
是函数
的图象的一条切线.
(1)求函数的解析式及
的值;
(2)若对于任意
,
恒成立,求实数
的取值范围.