若存在实常数和
,使得函数
和
对其定义域上的任意实数
分别满足:
和
,则称直线
为
和
的“隔离直线”.已知函数
和函数
,那么函数
和函数
的隔离直线方程为_________.
函数 的图像在点 处的切线与 轴交点的横坐标为 , 为正整数, ,则
已知函数与
轴相切
若直线
与
分别交
的图象于
四点
且四边形
的面积为25
则正实数
的值为
已知函数f(x)=(x2+a)的图象在点Pn(n,f(n))(n∈N*)处的切线ln的斜率为kn,直线ln交x轴,y轴分别于点An(xn,0),Bn(0,yn),且y1=-1.给出以下结论:
①a=-1;
②记函数g(n)=xn(n∈N*),则函数g(n)的单调性是先减后增,且最小值为;
③当n∈N*时,;
④当n∈N*时,记数列的前
项和为
,则
.
其中,正确的结论有 (写出所有正确结论的序号)
已知函数,
.
(1)当时,求函数
在
处的切线方程;
(2)是否存在实数,使得对任意的
,恒有
成立?若存在,求出实数
的取值范围;若不存在,请说明理由.
我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得
,两边对x求导数,得
于是
,
运用此方法可以求得函数在(1,1)处的切线方程是 .