若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知函数和函数,那么函数和函数的隔离直线方程为_________.
已知对任意的实数,直线都不与曲线相切.
(1)求实数的取值范围;
(2)当时,函数的图象上是否存在一点,使得点到轴的距离不小于.试证明你的结论.
设函数,,,
(1)若曲线与轴相切于异于原点的一点,且函数的极小值为,求的值;
(2)若,且,
①求证:; ②求证:在上存在极值点.
已知函数f(x)=k(x﹣1)ex+x2.
(Ⅰ)当时k=﹣,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.
已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:
已知函数,.
(1)当时,求函数在处的切线方程;
(2)是否存在实数,使得对任意的,恒有成立?若存在,求出实数的取值范围;若不存在,请说明理由.
已知函数在处取得极值.
(1)求a、b的值;
(2)求过点且与曲线相切的切线方程.
(本小题满分13分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数和在点P处相切,称点P为这两个函数的切点.设函数,.
(Ⅰ)当,时,判断函数和是否相切?并说明理由;
(Ⅱ)已知,,且函数和相切,求切点P的坐标;
(Ⅲ)设,点P的坐标为,问是否存在符合条件的函数和,使得它们在点P处相切?若点P的坐标为呢?(结论不要求证明)
已知函数的导函数为,的图象在点,处的切线方程为,且,直线是函数的图象的一条切线.
(1)求函数的解析式及的值;
(2)若对于任意,恒成立,求实数的取值范围.