高中数学

已知函数f(x)=sinx,g(x)=mx- (m为实数).
(1)求曲线y=f(x)在点P(),f()处的切线方程;
(2)求函数g(x)的单调递减区间;
(3)若m=1,证明:当x>0时,f(x)<g(x)+.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当图象是否存在不同的两点A、B具有(2)问中所得出的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数满足如下条件:当时,,且对任
,都有.
(1)求函数的图象在点处的切线方程;
(2)求当时,函数的解析式;
(3)是否存在,使得等式
成立?若存在就求出),若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=ln x,g(x)=x2-bx(b为常数).
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知).
(1)若时,求函数在点处的切线方程;
(2)若函数上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 
(1)讨论函数在定义域内的极值点的个数;
(2)若函数=1处取得极值,对任意的∈(0,+∞),恒成立,求实数b的取值范围;
(3)当时,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.
(1)当取到极值,求的值;
(2)当满足什么条件时,在区间上有单调递增的区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设曲线在点处的切线与轴的定点的横坐标为,令.
(1)当时,求曲线在点处的切线方程;
(2)求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求的单调区间;
(Ⅲ)证明:对任意的在区间内均存在零点.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,从点轴的垂线交曲线于点,曲线在点处的切线与轴交于点,再从轴的垂线交曲线于点,依次重复上述过程得到一系列点:,记点的坐标为

(Ⅰ)试求的关系
(Ⅱ)求

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

f ( x ) = x 3 + a x 2 + b x + 1 的导数 f ` ( x ) 满足 f ` ( 1 ) = 2 a , f ` ( 2 ) = - b ,其中常数 a , b R
(Ⅰ)求曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程.
(Ⅱ)设 g ( x ) = f ` ( x ) e - x .求函数 g ( x ) 的极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若使得成立,求满足上述条件的最大整数
(3)当时,若对于区间内的任意两个不相等的实数,都有
成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何试题