关于的函数,有下列结论:
①、该函数的定义域是; ②、该函数是奇函数;
③、该函数的最小值为;
④、当 时为增函数,当时为减函数;
其中,所有正确结论的序号是 。
已知函数是R上的可导函数,当时,有,则函数的零点个数是( )
A.0 | B.1 | C.2 | D.3 |
对函数 ,若存在 且 ,使得 (其中 A, B为常数),则称 为"可分解函数"。
(1)试判断 是否为"可分解函数",若是,求出 A, B的值;若不是,说明理由;
(2)用反证法证明: 不是"可分解函数";
(3)若 是"可分解函数",则求 a的取值范围,并写出 A, B关于 a的相应的表达式。
(本题14分)
已知是一个奇函数.
(1)求的值和的值域;
(2)设>,若在区间是增函数,求的取值范围
(3) 设,若对取一切实数,不等式都成立,求的取值范围.
已知函数,
(1)当时,求函数的极值;
(2) 若在[-1,1]上单调递减,求实数的取值范围.
已知函数 f(x)的定义域为,其导函数f'(x)的图象如图所示,则对于任意,下列结论正确的是( )
①恒成立;
②;
③;
④ > ;
⑤ < .
A.①③ | B.①③④ | C.②④ | D.②⑤ |
已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.