【原创】如果对定义在上的函数,对任意,都有,
则称函数为“函数”.给出下列四个函数:
①;②;③;④.
则其中“函数”共有( )
A.个 | B.个 | C.个 | D.个 |
(本小题满分12分)
若函数满足下列两个性质:
①在其定义域上是单调增函数或单调减函数;
②在的定义域内存在某个区间使得在上的值域是.则我们称为“内含函数”.
(1)判断函数是否为“内含函数”?若是,求出a、b,若不是,说明理由;
(2)若函数是“内含函数”,求实数t的取值范围.
设与是定义在同一区间上的两个函数,若函数上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”。若上是“关联函数”,则m的取值范围为( )
A. | B. | C. | D. |
函数的定义域为A,若且时总有,则称为单函数.例如,函数=2x+1()是单函数.下列命题:
①函数(xR)是单函数;
②指数函数(xR)是单函数;
③若为单函数,且,则;
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是_________.(写出所有真命题的编号)
若函数 y =f(x)在定义域内给定区间[a,b]上存在xo(a<xo<b),满足f(xo)=,则称函数y=f(x)是[a,b]上的“平均值函数”,xo是它的一个均值点.例如y=|x|是[-2,2]上的“平均值函数”,O就是它的均值点.
(1)若函数,f(x)= x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是 .
(2)若f(x)=㏑x是区间[a,b](b>a≥1)上的“平均值函数”,xo是它的一个均值点,则㏑xo与 的大小关系是 .
已知函数,.定义:,,……,
,…满足的点称为的阶不动点.则的n
阶不动点的个数是( )
A.个 | B.个 | C.个 | D.个 |
已知,是定义在集合上的两个函数.对任意的,存在常数,使得,,且.则函数
在集合上的最大值为( )
A. | B. | C. | D. |
对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列 4个函数:
①,②,③,④.
其中存在唯一“可等域区间”的“可等域函数”为
A.①②③ | B.②③ | C.①③ | D.②③④ |
德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个结论:
①;
②函数是偶函数;
③任取一个不为零的有理数,对任意的恒成立;
④存在三个点,,,使得为等边三角形.
其中正确结论的个数是( )
A. | B. | C. | D. |
对于定义域和值域均为[0,1]的函数f(x),定义,,…,,n=1,2,3,….满足的点x∈[0,1]称为f的阶周期点.设则f的阶周期点的个数是
A.2n | B.2(2n-1) | C.2n | D.2n2 |
若函数满足:在定义域D内存在实数,使得成立,则称函数为“1的饱和函数”.给出下列四个函数:①;②;③;④.其中是“1的饱和函数”的所有函数的序号为( ).
A.①③ | B.②④ | C.①② | D.③④ |
(本小题满分16分)对于函数,如果存在实数使得,那么称为的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数.若不等式在上有解,求实数的取值范围.
对于三次函数,给出定义:设是函数y=f(x)的导数,是的导数,若方程有实数解,则称点为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设函数,则=( )
A.2014 | B.2013 | C. | D.1007 |