(本小题满分12分)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式
已知
(1)求函数在[t,t+2](t>0)上的最小值
(2)对一切恒成立,求实数a的取值范围。
已知二次函数中均为实数,且满足,对于任意实数都有,并且当时有成立。
(1)求的值;
(2)证明:;
(3)当∈[-2,2]且取最小值时,函数(为实数)是单调函数,求证:。
已知三次函数的导函数,,、为实数。
(Ⅰ)若曲线在点(,)处切线的斜率为12,求的值;
(Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。
已知偶函数满足:当时,,
当时,
(1) 求当时,的表达式;
(2) 试讨论:当实数满足什么条件时,函数有4个零点,
且这4个零点从小到大依次构成等差数列.
已知函数
(I)如果对任意恒成立,求实数a的取值范围;
(II)设函数的两个极值点分别为判断下列三个代数式:
①②③中有几个为定值?并且是定值请求出;
若不是定值,请把不是定值的表示为函数并求出的最小值.
对于函数,若存在,使,则称是的一
个"不动点".已知二次函数
(1)当时,求函数的不动点;
(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,
且两点关于直线对称,求的最小值.
将函数的图像向左平移1个单位,再将图像上的所
有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图像.
(1)求函数的解析式和定义域;
(2)求函数的最大值.