已知函数.(1)求的值;(2)设,若,求的值.
已知函数,,k为非零实数. (Ⅰ)设t=k2,若函数f(x),g(x)在区间(0,+∞)上单调性相同,求k的取值范围; (Ⅱ)是否存在正实数k,都能找到t∈[1,2],使得关于x的方程f(x)=g(x)在[1,5]上有且仅有一个实数根,且在[-5,-1]上至多有一个实数根.若存在,请求出所有k的值的集合;若不存在,请说明理由.
用0,1,2,3,4,5这六个数字: (Ⅰ)可组成多少个无重复数字的自然数? (Ⅱ)可组成多少个无重复数字的四位偶数? (Ⅲ)组成无重复数字的四位数中比4023大的数有多少?
由下列不等式:,,,,…,你能得到一个怎样的一般不等式?并加以证明.
阅读下面材料: 根据两角和与差的正弦公式,有------①------② 由①+② 得------③ 令有 代入③得 (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:; (Ⅱ)若的三个内角满足,试判断的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
函数,已知是奇函数。 (Ⅰ)求b,c的值; (Ⅱ)求g(x)的单调区间与极值。