如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码 1 - 7 分别对应年份 2008 - 2014 .
(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以证明;
(Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0 . 01 ) ,预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: ∑ i = 1 7 y i = 9 . 32 , ∑ i = 1 7 t i y i = 40 . 17 , ∑ i = 1 7 ( y i - y ̅ ) 2 = 0 . 55 , 7 ≈ 2 . 646 .
参考公式:相关系数 r = ∑ i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) ∑ i = 1 n ( t i - t ̅ ) 2 ∑ i = 1 n ( y i - y ̅ ) 2 ,
回归方程 y ̂ = a ̂ + b ̂ t 中斜率和截距的最小二乘估计公式分别为:
b ̂ = ∑ i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) ∑ i = 1 n ( t i - t ̅ ) 2 , a ̂ = y ̅ - b ̂ t ̅ .
(本题满分14分)在中,分别是角,,的对边,且. (I)若函数求的单调增区间; (II)若,求面积的最大值.
( 本题满分14分)已知函数对任意实数均有,其中常数k为负数,且在区间上有表达式 (1)求的值; (2)写出在上的表达式,并讨论函数在上的单调性.
(本题满分14分)设函数的定义域为,记函数的最大值为. (1)求的解析式;(2)已知试求实数的取值范围.
( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2时,车流速度v是车流密度x的一次函数. (Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
(本题满分14分)已知函数的一系列对应值如下表:
(1)根据表格提供的数据求函数的解析式; (2)根据(1)的结果,若函数周期为,求在区间上的最大、最小值及对应的的值.