如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码 1 - 7 分别对应年份 2008 - 2014 .
(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以证明;
(Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0 . 01 ) ,预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: ∑ i = 1 7 y i = 9 . 32 , ∑ i = 1 7 t i y i = 40 . 17 , ∑ i = 1 7 ( y i - y ̅ ) 2 = 0 . 55 , 7 ≈ 2 . 646 .
参考公式:相关系数 r = ∑ i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) ∑ i = 1 n ( t i - t ̅ ) 2 ∑ i = 1 n ( y i - y ̅ ) 2 ,
回归方程 y ̂ = a ̂ + b ̂ t 中斜率和截距的最小二乘估计公式分别为:
b ̂ = ∑ i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) ∑ i = 1 n ( t i - t ̅ ) 2 , a ̂ = y ̅ - b ̂ t ̅ .
已知集合 (1)若求实数m的值; (2)若求实数m取值范围。
已知数列中,且点在直线上. (1)求数列的通项公式; (2)若函数 求函数的最小值; (3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由。
设斜率为的直线交椭圆:于两点,点为弦的中点,直线的斜率为(其中为坐标原点,假设、都存在). (1)求×的值. (2)把上述椭圆一般化为(>>0),其它条件不变,试猜想与关系(不需要证明).请你给出在双曲线(>0,>0)中相类似的结论,并证明你的结论.
有一种变压器铁芯的截面呈正十字形,为保证所需的磁通量,要求正十字形的面积为4cm2,为了使用来绕铁芯的铜线最省,即正十字形外接圆周长最短,应如何设计 正十字形的长和宽?
已知函数是奇函数. (1)求的值; (2)判断函数的单调性,并用定义证明; (3)求函数的值域.