(本小题满分12分)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式
如图,已知三棱柱的侧棱与底面垂直,且,,,,点、、分别为、、的中点. (1)求证:平面; (2)求证:面;
某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为. (1)分别求出,的值; (2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差和,并由此分析两组技工的加工水平; (3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于,则称该车间“质量合格”,求该车间“质量合格”的概率. (注:方差,其中为数据的平均数).
已知数列的前项和为,,,. (Ⅰ)求证:数列是等比数列; (Ⅱ)设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.
设不等式的解集为,. (Ⅰ)证明:; (Ⅱ)比较与的大小,并说明理由.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为。 (Ⅰ)写出曲线C1与直线l的直角坐标方程; (Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值。