已知函数,满足.
(1)求常数c的值;
(2)解关于的不等式.
(本小题满分13分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。
已知函数.
(1)求函数的单调区间;
(2)若,求函数的值域.
(本小题满分12分)
若函数满足下列两个性质:
①在其定义域上是单调增函数或单调减函数;
②在的定义域内存在某个区间使得在上的值域是.则我们称为“内含函数”.
(1)判断函数是否为“内含函数”?若是,求出a、b,若不是,说明理由;
(2)若函数是“内含函数”,求实数t的取值范围.
已知函数(a为常数)在x=1处的切线的斜率为1.
(1)求实数a的值,并求函数的单调区间,
(2)若不等式≥k在区间上恒成立,其中e为自然对数的底数,求实数k的取值范围.
(本小题满分12分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数,
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以4为上界的有界函数,求实数的取值范围.
已知函数().
(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;
(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.
已知函数的定义域为,若在上为增函数,则称
为“比增函数”;
(Ⅰ)若函数是“比增函数”,求实数的取值范围;
(Ⅱ)已知,为“比增函数”,且的部分函数值由下表给出,
求证:.
(本小题满分14分)已知函数,,设曲线在点处的切线方程为. 如果对任意的,均有:
①当时,;
②当时,;
③当时,,
则称为函数的一个“ʃ-点”.
(1)判断是否是下列函数的“ʃ-点”:
①; ②.(只需写出结论)
(2)设函数.
(ⅰ)若,证明:是函数的一个“ʃ-点”;
(ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
(本小题满分12分)已知定义域为的函数同时满足以下三个条件:
①对任意的,总有;
②;
③若且,则有成立,则称为“友谊函数”.
(Ⅰ)若已知为“友谊函数”,求的值;
(Ⅱ)函数在区间上是否为“友谊函数”?并给出理由;
(Ⅲ)已知为“友谊函数”,且 ,求证:.
(本小题满分12分)设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知.
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数在上总为“凸函数”,求的最大值.
(本小题满分14分)对于定义域为的函数,若同时满足下列条件:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把()叫闭函数,且条件②中的区间为的一个“好区间”.
(1)求闭函数的“好区间”;
(2)若为闭函数的“好区间”,求、的值;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
设是正整数,为正有理数.
(1)求函数的最小值;
(2)证明:;
(3)设,记为不小于的最小整数,例如.令的值.
(参考数据:.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数.
(1) 试说明函数的图像是由函数的图像经过怎样的变换得到的;
(2) (理科)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是;
(3) 求函数的单调区间和值域.