设函数与是定义在同一区间上的两个函数,如果函数在区间
上有()个不同的零点,那么称函数和在区间上为“阶关联函数”.若
与在上是“阶关联函数”,则的取值范围是( )
A. | B. | C. | D. |
已知的三内角分别为,向量
,记函数.
(1)若,求的面积;
(2)若关于的方程有两个不同的实数解,求实数的取值范围.
若直角坐标平面内两相异点A、B两点满足:① 点A、B都在函数 f (x)的图象上;② 点A、B关于原点对称,则点对 (A,B)是函数 f (x)的一个“姊妹点对”.点对 (A,B)与 (B,A)可看作是同一个“姊妹点对”.已知函数 f (x)= ,则 f (x)的“姊妹点对”有:
A.0 个 B.1 个 C.2 个 D.3 个
若直角坐标平面内两点满足条件:①点都在的图象上;②点关于原点对称,则对称点对是函数的一个“兄弟点对”(点对与可看作一个“兄弟点对”).已知函数, 则的“兄弟点对”的个数为
A.2 | B.3 | C.4 | D.5 |
对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是( )
A. |
B. |
C. |
D. |
设m是一个非负整数,m的个位数记作,如,,,称这样的函数为尾数函数.给出下列有关尾数函数的结论:
①;
②,若,都有;]
③;
则正确的结论的个数为( )
A.3 | B.2 | C.1 | D.0 |
德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个结论:
①;
②函数是偶函数;
③任取一个不为零的有理数,对任意的恒成立;
④存在三个点,,,使得为等边三角形.
其中正确结论的个数是( )
A. | B. | C. | D. |
(本小题满分16分)对于函数,如果存在实数使得,那么称为的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数.若不等式在上有解,求实数的取值范围.
已知函数,.定义:,,……,
,…满足的点称为的阶不动点.则的n
阶不动点的个数是( )
A.个 | B.个 | C.个 | D.个 |
若函数满足对任意的,都有 成立,则称函数在区间上是“被约束的”。若函数在区间上是“被约束的”,则实数的取值范围是( )
A. | B. |
C. | D. |