高中数学

定义方程的实数根叫做函数的“新驻点”,若函数的“新驻点”分别为,则的大小关系为(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设m是一个非负整数,m的个位数记作,如,称这样的函数为尾数函数.给出下列有关尾数函数的结论:

,若,都有;]

则正确的结论的个数为(  )

A.3 B.2 C.1 D.0
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于函数,设,若存在,使得,则称互为“零点相邻函数”.若函数互为“零点相邻函数”,则实数的取值范围是             

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义函数,若存在常数,对于任意,存在唯一的,使得,则称函数上的“均值”为,已知,则函数上的“均值”为______.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是定义在同一区间上的两个函数,若函数上有两个不同的零点,则称上是“关联函数”,区间称为“关联区间”。若上是“关联函数”,则m的取值范围为(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义:如果函数在定义域内给定区间上存在,满足,则称函数上的“平均值函数”,是它的一个均值点,例如上的平均值函数,就是它的均值点.现有函数上的平均值函数,则实数的取值范围是        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数的定义域为,若时总有,则称为单函数,
则:①函数是单函数;②函数是单函数;③若为单函数,
,则;④若函数在定义域内某个区间上具有单调性,则一定
是单函数;以上命题正确的是( )

A.①④ B.②③ C.①③ D.①③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于函数,设,若存在,使得,则称互为“零点相邻函数”.若函数互为“零点相邻函数”,则实数的取值范围是(  )

A. B.
C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:
     ②      ③    ④
则其中是“保等比数列函数”的的序号为

A.①② B.③④ C.①③ D.②④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若函数 y =f(x)在定义域内给定区间[a,b]上存在xo(a<xo<b),满足f(xo)=,则称函数y=f(x)是[a,b]上的“平均值函数”,xo是它的一个均值点.例如y=|x|是[-2,2]上的“平均值函数”,O就是它的均值点.
(1)若函数,f(x)= x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是      
(2)若f(x)=㏑x是区间[a,b](b>a≥1)上的“平均值函数”,xo是它的一个均值点,则㏑xo 的大小关系是      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知定义在上的函数是奇函数,且满足,数列满足,且的前项和),则(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个结论:

②函数是偶函数;
③任取一个不为零的有理数对任意的恒成立;
④存在三个点,使得为等边三角形.
其中正确结论的个数是(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分16分)对于函数,如果存在实数使得,那么称的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:
第二组:
(2)设,生成函数.若不等式上有解,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数.定义:,……,
…满足的点称为阶不动点.则的n
阶不动点的个数是(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学函数迭代试题